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Abstract

Forest ecosystems exhibit complex dynamics over time and space. Management of forest
ecosystems involves the need to forecast future states of complex systems that are often
undergoing structural changes. This in turn requires integration of quantitative science and
engineering componexiF‘s‘ with socio-political, regulatory, and economic considerations. The

amount of data, information and knowledge involved in the management process is often
overwhelming. Integrated decision support systems may help managers make consistently
good decisions concernling forest ecosystem management. Integrating computer systems using
a system-specific or custom approach has many disadvantages. We compare a variety of
current approaches, suggest characteristics that an approach should have, and propose that
the Distributed Component Object Model is an approach that is very suitable for forest
ecosystem decision sypport system integration. © 2000 Elsevier Science B.V. All rights
reserved.
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(Rauscher, 1995). The ultimate objective of a DSS is to assist decision-makers (e.g.
managers, planners, public officials, scientists, and the general public) in planning
and decision-making processes by giving the decision-makers useful and scientifi-
cally sound information.

A DSS may consist of a number of subsystems, each with-a specific task. In
forest ecosystem management (FEM), a DSS may contain a user interface, a
database, a geographical information system (GIS), a knowledge base, simulation
and optimization models, help/hypertext management, and data visualization and
decision methods (Rauscher, 1999).

Different forest ecosystem management decision support systems (FEM-DSSs)
support different parts of the ecosystem management process (Rauscher, 1999).
FEM-DSSs may be categorized as either ‘full service’ or ‘functional service’
systems. Full service FEM-DSSs attempt to be comprehensive by offering support
for the complete forest ecosystem management process. In addition, these full
service systems (also called full service modules) may be classified by their specific
level or scale of support: regional assessment, forest planning and project-level
planning. Functional service FEM-DSSs provide more narrowly specialized support
for one or a few phases of the forest ecosystem management process. These service
modules are further categorized by their function; for example, group negotiations,
vegetation dynamics, disturbance simulation, or spatial visualization.

Mowrer et al. (1997) reviewed over 30 FEM-DSSs and reported several notewor-
thy conclusions. First, they found no single system that successfully addresses every
important aspect of forest ecosystem management. Second, none of the systems
comprehensively address ecological and management interactions across multiple
scales. Third, the current generation of FEM-DSSs is much less capable of
addressing social and economic issues than biophysical issues. Finally, no system
simultaneously considers social, economic and biophysical issues,' and only one
system provides group consensus-building support.

Most FEM-DSSs were developed independent of one another. As a result, they
are typically large, monolithic, stand-alone systems incapable of performing joint
problem-solving tasks without extensive revisions. Because none of the existing
FEM-DSSs have been found capable of addressing the full range of support
required for the management of a complex forest ecosystem (Mowrer et al., 1997;
Rauscher, 1999), an ideal FEM-DSS requires the combined capabilities of many of
the available systems to work together. This necessitates both full service and
functional service system integration. Furthermore, it is often more cost effective to
re-use existing software than to develop custom software when an existing FEM-
DSS is to be enhanced to provide additional services.

FEM-DSSs and/or their component subsystems have been written in different
software languages, reside on different hardware platforms, have different data
access mechanisms, and different subsystem interfaces. For example, nongeograph-
ical databases may be written in Oracle, GIS databases in ARC/INFO, knowledge

! Although EMDS falis into the category of systems that do not do these things, it is capable of
supporting these if the user provides the proper design and implementation (Reynolds et al., 1997).
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bases in Prolog, and a simulation model in Fortran. This kind of development
heterogeneity has to be addressed when integrating FEM-DSSs. Although efforts at
integrating FEM-DSSs do exist, they have been ad hoc, yielding unique, point-to-
point custom solutions. These custom solutions are typically difficult to maintain
and extend (Rauscher, 1999).

One solution to many of the problems in systems integration is to provide an
interoperable architecture for software systems (Potter et al., 1992, 1994; Otte et al.,
1996). Interoperability is the ability of two or more software components to
cooperate by exchanging services and data with one another, despite the possible
heterogeneity in their language, interface and hardware platform (Heiler, 1995;
Wegner, 1996; Sheth, 1998). Interoperable software architectures provide a stan-
dard that promotes communication between components, and provides for the
integration of legacy and newly developed components.

In the past decade, organizations have been moving mainframe-based systems
toward open, distributed computing environments. A distributed computing envi-
ronment is an environment where multiple computers are networked together, and
allowed to share data and processing responsibilities. The demand for interoperabil-
ity has been driven by the accelerated construction of large-scale distributed systems
for operational use and by increasing use of the Internet (Manola, 1995). Dis-
tributed computing offers many advantages, including location transparency to
users, scalability (adding more capability by adding more computers to the net-
work), fault tolerance (allowing processing to continue even when a computer or
network connection is broken), load balancing (sharing the work load equally
among the networked computers) and resource sharing (sharing databases or other
special services). As such, much discussion of interoperability and its research have
been concerned with distributed computing; for example, the recent emergence of
Java, the Object Management Group’s CORBA (Common Object Request Broker
Architecture) and Microsoft’s DCOM (Distributed Component Object Model) are
all for this purpose. In addition, object orientation (OO) is probably the most
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impact on distributed systems. This approach is based on issuing commands to
distributed software objects via the Internet (Walsh, 1998; Winer, 1998; Udell,
1999).

2. Interoperability

The scope of interoperability has changed drastically since the first introduction
of a few interconnected computers. Currently, we think of the scope as including
any application on any computer interfacing with any other application on any
other computer; a global scope (Sheth, 1998). However, having a global perspective
introduces a variety of issues that need to be addressed in order to understand what
interoperability really is. The following levels or types of interoperability have been
identified. _

e Platform interoperability (also known as location and technical interoperability)
resolves the differences in the hardware, system software, and the services that
deal with communication between two objects (Lockemann et al., 1997; NC3A,
1997). It allows a client to make a transparent call to a server even if the server
runs in another process or on another computer, so that the call looks as if it
were an in-process (local) call.

e Basic interoperability means that binary components (executables) uniquely
developed by certain developers are assured to function with other binary
components built by different developers.

e Versioning interoperability is the agreement that one system component can be
upgraded without requiring all other system components to be upgraded.

e Language interoperability provides language independence such that applica-
tions which are implemented in different programming languages can be inte-
grated (Meek, 1994). As a result, components written in different programming
languages can communicate with each other.

e Notational interoperability (Lockemann et al., 1997) can be further classified
into data interoperability, object interface interoperability, and object framework
interoperability. Data interoperability addresses disagreements on data formats,
types, structures and representations (Manola, 1995; Wegner, 1996). Object
interface interoperability deals with agreements on object interface characteristics
(Manola, 1995). Object framework interoperability is concerned with coopera-
tion among the sets of object classes found in object frameworks (Gamma et al,,
1995). Incompatible or different functional interfaces, data models, data types,
database schemas, terminology, and data formats are example issues to be
addressed by notational interoperability (Lockemann et al., 1997).

e Semantic interoperability ensures that exchanges of services and data make
sense, i.e. that the client and the server have a common understanding of the
meanings of the requested services and data (Heiler, 1995). Semantic interoper-
ability is often closely linked to notational interoperability because issues associ-
ated with notational interoperability can and do lead to semantic conflicts in
many cases (Heiler, 1995).
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e Coordinational interoperability deals with the interaction between client and
server operations; for example, preservation of temporal as well as functional
properties (order constraints on operations or coordination of inputs from
multiple input streams) (Wegner, 1996). Coordinational interoperability is usu-
ally obtained through common policies, contracts and protocols to which the
components subject their activities (Lockemann et al., 1997).

It is technically more difficult to achieve semantic mteroperab1hty and coordma-
tional interoperability (both considered to be high-level types) than platform
interoperability, language interoperability and notational interoperability (all con-
sidered to be low-level types). For example, interoperability can be realized with
reasonable efforts for a wide range of differences in data formats and for recog-
nized differences of representation (Wegner, 1996). Semantic interoperability, how-
ever, may be hard to achieve in many cases (Heiler, 1995). Semantic agreement is
often lacking when old data or procedures are used for new purposes not antici-
pated by their original developers. Semantic agreements may also be lacking among
new systems that are the products of independent development efforts (e.g. systems
developed at different times by different programmers). Finally, determining the
necessary semantic information with accuracy can be very difficult if not impossible
(see Heiler (1995) for further explanation).

There are two major mechanisms for interoperation: interface standardization
and interface bridging (Wegner, 1996). Interface standardization links client and
server interfaces to predefined standards, whereas interface bridging is a two-way
. linkage between a client and server. Interface standardization needs only m+n
links for m clients and n servers, as opposed to m x n links for interface bridging.
Therefore, interface standardization is more scalable and reduces the task of
interconnecting components, but standardized interface systems are closed and thus
may preclude supporting new functional features, like transactions, which are
desired later but not considered at the time of standardization. Interface bridging,
on the other hand, is open and more flexible for tailoring requirements of particular
clients and servers, yet it carries a high price in custom development, maintenance,
and lack of extensibility.

3. FEM-DSS interoperability

In order to investigate interoperability among FEM-DSSs, five representative
systems selected from Mowrer et al. (1997) were analyzed. The systems selected
were NED-1 (Rauscher et al, 1997; Twery et al, 1997), LOKI (Bevins and
Andrews, 1993; Bevins et al., 1995; Keane et al., 1996), FVS (Teck et al., 1996,
1997), LMS (McCarter et al., 1998a,b), and INFORMS (STARR Lab., 1993;
Perisho et al., 1995; Choo and Lee, 1997). NED-1, LOKI, LMS, and INFORMS
are full service FEM-DSSs. FVS, in contrast, is a functional service system
specializing in forecasting general vegetation dynamics. However, FVS is highly
modularized with an intricate, ad hoc inter-module approach to communication
that was interesting enough to warrant examination. Each FEM-DSS was
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subjectively evaluated against the following seven criteria: language independence
(i.e. language interoperability), platform independence (i.e. platform interoperabil-
ity), architectural level, module interaction, legacy handling, object orientation and
distributed processing capability.

A well-designed interoperability architecture for module interaction should be
generic and general purpose. It should have a well-defined standard for communica-
tion-related issues such as object registration (a scheme to identify available objects
and their function), discovery (finding a new component when it becomes available)
and cross-network transport protocols (the standard followed by different networks
that are connected, such as the Internet, with a corporate local area network). If the
mechanism is an ad hoc, point-to-point solution that has, for example, domain
constraints, it will be of little use to others.

Integration of software modules involves dealing with legacy components in
many cases. These legacy components often possess a user interface that is difficult
to manage in an integrated environment. This is due to the fact that the user
interface is typically deeply intertwined with the functioning of the legacy
application. '

A legacy system with an OO framework that allows object re-use may facilitate
the integration of that system. Because the Internet offers a new way of delivering
knowledge to the public, one would be better off if the system supports it.
Furthermore, a mature, well-documented standard with a large customer base is
usually favored over a system that is still in the conceptual or prototype stage.
Finally, the cost of the architecture has to be factored in. Given that other factors
are comparable, an interoperable framework that is inexpensive or even free may be
more competitive. :

Table 1 summarizes our comparison of NED-1, LOKI, FVS, INFORMS, and
LMS (see Liu (1998) for complete details). We arrived at several findings during
this evaluation process. First, these systems integrate a diverse range of knowledge
information (e.g. decision making, knowledge base, simulation modeling, GIS,
associated databases for calibration and execution, data visualization, etc.). Inde-
pendent construction, and a lack of USDA Forest Service agency-wide databases,
data standards, and standard hardware, have led to each of these systems being
developed with their own localized data requirements (data formats, database and
graphical user interface, etc.). There was a lack of documentation for most systems
regarding their architectural designs; only system functionality was typically well
described. Except for LOKI, the interoperable frameworks for all systems evaluated
are at a high level, meaning that they are all domain-specific designs, resulting in
unique, point-to-point solutions to module communications that are difficult to
generalize into generic architectures. LOKI is a promising middleware architecture
that deserves a follow-up investigation and evaluation for its potential agency-wide
use, but its modified implementation has yet to be distributed and its generic
features remain to be seen. None of the FEM-DSSs evaluated supports language
interoperability, platform independence, distributed processing and the Internet.
Most systems (except for NED-1 and possibly LOKI) are not object-based,
therefore having no object re-usability. Finally, none of the FEM-DSSs examined
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in this paper defines an explicit standard mechanism for dealing with the peculiar-
ities of legacy applications. Although LMS was designed specifically to integrate
existing systems, it does soO in an ad hoc, point-to-point manner.

4. NonFEM approaches

Interoperability outside the forestry domain has received extensive attention. We
evaluated four such approaches using the same criteria as before (see Liu (1998) for
details). The approaches addressed include CORBA (von Bultzingsloewen et al.,
1996; Kramer et al., 1997; Leppinen et al., 1997; OMG, 1997), DCOM (Microsoft,
1995, 1996, 1997, 1998), intelligent agent-based software engineering (Finin et al.,
1994; Genesereth and Ketchpel, 1994, Mayfield et al,, 1996), and DIAS/DEEM (the
Dynamic Information Architecture System/Dynamic Environmental Effects Model)
(Argonne National Laboratory, 1995a; Argonne National Laboratory 1995b).
These approaches encompass several different areas of computer science, including:
databases, where the emphasis is on interoperation and data integration; software
engineering, where tool and environment integration issues dominate; artificial
intelligence, where systems consisting of distributed intelligent agents are being
developed and explored; and information systems. :

These four approaches are designed to provide various sorts of software interop-
erability and easy integration of legacy systems. Table 2 compares and contrasts the
four approaches. CORBA and DCOM are two mature, interoperable object models
that provide well-designed integration and communication standards. Both are
considered low-level architectures. They are used as the backbones or middleware
of modern distributed object environments. They facilitate the task of building
distributed applications by presenting the network as one large virtual machine in
which remote objects appear to be local. Middleware use frees the developer from
many of the low-level programming tasks necessary to achieve integration of and
coordinated interactions between distributed objects (such as handling the individ-
ual data packets sent from one machine to another), while at the same time
providing many necessary support services. Neither CORBA nor DCOM assume
any domain constraints and can both be applied to the integration of any
applications. They are generic, general-purpose integration frameworks that are
very popular. .

CORBA and DCOM both provide standard specifications for achieving language
interoperability and platform independence. They define their own interface stan-
dards to deal with peculiarities of legacy applications. They support distributed
processing, object re-use, and the Internet. Both architectures are well documented
and the documentation materials are easily accessible to the public — on-line as
well as through books and journal articles. CORBA can be purchased from
multiple vendors, and DCOM is shipped with Windows NT/98 or can be down-
loaded free for Windows 95.

The intelligent agent-based approach and DIAS/DEEM are high-level frame-
works in that, primarily, neither intends to address low-level details (e.g. object



343

Jodeuew
1IX9JU0D Paseq-So IN

PRIUAWNOOP [[9Mm 10N

uoneWIoJUl ON
adfjojoug

ON

K10043 w1 Fuisiwiosg

HOHRIUAWNDOP PojieIdp yoe| Kuep

pajuawajduwi
J1 Auew uoj Y3y — satrep

adfyoj0ad/jenidasuo)

(stu2)sAs jsoui 10J) S9A

SO smopuim 03 Suppam

sopoile |eudnof pue ‘syooq
‘QUI-U0 — PIUBUNVOP [joM

SO smopuim

mau yum paddiys o projumop
931) — 1509 juoyy-dn oN

] yosol Aq
pajuswd|diur — plepuwls aanjep

XaAioe y3nosyy — $oA

Xiuf} sajeuio

Fiewol [eads

sojonde jeuInol pue ‘s}00q UOHERIUSWNDIOP

‘UY-UO — PIARUBWN0P []IM

~esow 10 0018 — Y3
siopuaa sjdnnw £q
pajuswRjdiyy — piepuels anjep

dOll ysnoiyy — soA

{estuyoa

1500

snjels

pajoddns
PN |
Koeda|

3
@
«
=
S
Q
o~
n“ pauyap [|om Jou —— SIA saLep Juoeaaul WODA Buepan quQ yum Suuag
3 9pO2 304N0S SalIeA (3poo 3jqemdAX3) Aseulg 3po2 304n0§ asn-a1 10(qQO
lm iy 2y uw sjoo0303d wisjueoaW wisiuR oAU Juissaooad
B £Q109 asn ABW — S3A  1OYJ0 10 WOIP ‘BQI0D $3SN — SOA  Modsues) psuyop-fjom sey — S9A  Jodsued) pauyap-|jam sey — SI4 pamgquisig
< UONBUIPIOVD
g juiod o) Juod - 20y py satiep jesouany jedauan) SINpo A
m ON SaLIBA SaA s9A  9oudpuadapuj
2 somndwod
3 ON oN SOA SaA |euos1ag
Y xiufny
,.am SIA SOA SIA S Juoneisyiom
I uLIOfvfd
Y
3 (1amn : up1
g WIStUBYOIW PIuydp-|[om Buisn Suoeiaul) wsiueyodsw  JwQ Suisn Judejioiul) wsiueyddw  duspuadapul
O sey Ing ‘saA 10V ela — sap  Suiddew paugsp-jjam sey — sap  Suiddew pauysp-jjom sey — ssp afen3ue]
> suoneotjdde .
s |ejuswiuOsAUg ON ON ON Ppajuwi| ulewo(
. 43e 48t ™o woT [3n37
& Awouone Anjiqeiadosajut
& uotiesdaui [ppojy  onuewas ‘Junndwod panqLIsi uemIPPIN 21emaPPIN asodingd
m Wa3ada/svia yoeoidde juady Woda V430D

yoeosddy eLIdNID

WNd3a/svia pue ‘yoeosdde paseq-juade juadijjaiut “NODA ‘VEUOD Jo uosuedwo))

Z2qe



344 W.D. Potter et al. /] Computers and Electronics in Agriculture 27 (2000) 335-354

registration and discovery, cross-network transport) about interoperability. Instead,
they use available technologies such as CORBA or DCOM as their respective
facilitating middleware. The intelligent agent-based approach attempts to address
high-level (such as semantic) interoperability, especially for large, complex systems
whose components need to interact autonomously and intelligently in a heteroge-
neous, distributed environment. In the intelligent agent-based software engineering
approach, the agents must possess a variety of abilities. They must be able to:
communicate with each other using an expressive communication language; work
together cooperatively to accomplish complex goals; act on their own initiative; and
use local information and knowledge to manage local resources and handle requests
from peer agents. It is a very promising methodology, but its implementation tends
to be expensive because of its technical complexity (Finin et al., 1994; Genesereth
and Ketchpel, 1994) and it has not matured enough for wide use.

DIAS/DEEM specifically deals with integration of environmental simulation
models and therefore is not a general-purpose architecture that can be easily
applied to other domains. DIAS is an OO framework into which simulation
models, information processing applications and databases can be integrated.
DEEM is an example application of DIAS that provides interoperability among
environmental models.

5. Design criteria for a FEM-DSS interoperability architecture

As we have seen, several FEM approaches claim to support an interoperable
architecture. However, there are many drawbacks to these approaches. Most
important is the lack of interface standardization (most approaches, like LMS, use
interface bridging). A standard approach is preferable to a customized approach.
The nonFEM approaches provide some form of standardization but some of them
are still not mature enough. The remaining choices include DCOM and CORBA.
CORBA includes overheads such as complexity, expense, performance issues, and
sheer size that may detract from its appeal. DCOM, on the other hand, is an
integral part of the Windows operating system and is relatively easy to use for
system integration. These and other reasons mentioned earlier indicate that DCOM
is the most appealing architecture (of the approaches evaluated) for FEM-DSS
interoperability. ‘

An architectural design for FEM-DSS interoperability should satisfy several key
requirements. The design should be a framework that is language independent, so
that applications can be implemented in different programming languages and used
by software clients that are writing using different programming languages. The

design should have extensibility, which allows application developers to customize
a system to satisfy new needs. With extensibility, new components can be plugged
into the current system, existing components can be replaced with new ones, or new
components can be derived from existing ones. In this way, the current system

grows and evolves over time, and components can be re-used by others.
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Extensibility in turn requires that the design provides a generic set of interfaces;
these interfaces enable new components to participate by extending them with
minimal impact on durrent components. Common interfaces also form the basis for
communications and interactions between components. The proposed architecture
should provide a mechanism that enables communications and interactions. Fur-
thermore, the design should be able to handle the peculiarities of legacy systems.
For example, many legacy applications are not object oriented, and data and
functionality of one|application may not be readily available to other applications,
even if the applications are implemented using the same programming language and
run on the same machine. There ought to be a standard facility that can be used by
legacy systems to abstract and expose their services. so that these services can be
understood and utilized by the rest of the framework. This often involves creating
a so-called object wrapper that mediates between a legacy system and other
components. The easiest case is that only method interfaces need to be changed.
However, the task will be much more difficult if the user interface of the legacy
system needs to be modified and there is no documentation of its source code.

Finally, the design should be realistically applicable when implemented. The
mission of the USDA Forest Service is to serve the general public and help manage
national forests and associated ecosystems of the United States. Its public, non-
profit nature implies that forest decision support systems developed by the agency
are often distributed to the public freely or at nominal cost. As a result, any
integration that presumably relies on costly commercial products will severely limit

6. A DCOM-based framework

Based on our evaluation, we propose a DCOM-based framework for the
integration of forest decision support applications. This framework includes a
typical programming language and development environment such as Microsoft
Visual C+ + or Visual Basic. Using NED-1 and FVS as example applications, our
prototype demonstrates the effectiveness and appropriateness of integrating legacy
and newly developed applications using DCOM. The implementation also indicates
that, based on our [previous experience with CORBA (Maheshwari, 1997), DCOM
programming is easier and more productive. This is because we only focus on the
application-specific| implementation while the framework does many routine tasks;
for example, generating the templates necessary for creating DCOM objects and
registering the applications. An additional advantage with DCOM is that we can
develop distributed system interfaces using Microsoft resources. A slight difficulty
with DCOM is that it is, after all, a technical specification that takes some time to
master.

Fig. 1 illustrates the general structure of our proposed DCOM-based architecture
for integration. Canceptually, it has three major components: the caller or client
requesting some service, the controller that has DCOM as its middleware, and the
applications that provide the requested service.
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The caller, for example NED-1, is an entity that issues a request to an application
via the controller, and usually acts as an interface between the entire integrated-
system and the user. This interface is visual and may function differently than those
of application objects in the system. It may be the case that the caller is simply an
initiator for the available applications and not have a corresponding application
object. The caller can interact with one or more applications, for example FVS, to
accomplish its work.

The controller is responsible for locating and activating applications. More
importantly, it controls interactions between the caller and an application, and
between applications. The controller uses DCOM as its backbone, because DCOM
provides many system services that facilitate the registration of application compo-
nents, finding the location of the application being requested, and the communica-
tions between the caller and the application. While running an application, the
controller coordinates the callers’ dialog with the user. An additional responsibility
of the controller is to handle errors that may occur during an application’s
execution. If properly implemented, the entire process executes in a seamless way.
Adding a new application to or replacing an existing one in the integrated system
has minimal effect on how the framework looks to the user. Depending on the
nature of the distributed system, the controller may also contain processing rules
that help interpret the requests and instructions supplied by the user (via the caller).
Therefore, using the controller, the applications participate in a coordinated fashion
within the integrated information system.

o)
i
[ Caller J
!
Controller L

f
P

v

* l “.."'.
Application 1 Lo ’——| o seesmeet o
o FVEJ._I L@phcanon 2 L@phcatwn 3 Application N

Fig. 1. The DCOM-based interoperable architecture.
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An application is|a component that provides services to the integrated system.
For example, many of the forest decision support applications focus on simulation,
display, input/output, or analysis tasks. Each application is encapsulated within an
interface that follows a standard format (for example, the Microsoft Interface
Definition Language). This approach makes it possible for the application to
communicate with the rest of the framework, such that other applications can use
the interface to access the services this application provides. Interfacing also
provides an effective way to deal with legacy applications. Many legacy applica-
tions were developed with a stand-alone purpose. Their data and functionality may
not be readily available to other applications; certain interface modules of those
Jegacy applications may be proprietary, limited, or even lacking. Newly constructed
interfaces to the legacy applications act like adapters so that these legacy applica-
tions and the rest of the framework can work together, hence enabling re-use of
existing applications. ‘

The architectural [design should be general purpose, meaning that the framework
should have distributed processing capability and provide platform independence so
that it is ready to| work in heterogeneous, cross-network environments if it is
required to do so in the future. Overall, the proposed design is general and makes
no assumptions about the software applications to be integrated. Its standardized
interface scheme enables integration of a variety of applications. It is an open
framework in the sense that application components can be added and/or removed
without drastically affecting the functionality of the whole system. The adoption of
DCOM as the middleware supports this design.

7. The NED-FVS prototype

NED-1 is a full{service, goal-driven ecosystem management decision support
system (Rauscher et al., 1997; Twery et al., 1997). It is a multi-language system
consisting of components written in both C+ + and PROLOG. FVS is a widely
used program for predicting vegetation dynamics gver time (Teck et al., 1996). 1t is
written in FORTRAN-77 as a DOS application. SUPPOSE is a Windows-based,
user-friendly front-end to FVS written in C+ + (Teck et al. 1997). NED-1 uses the
functionality provided by SUPPOSE-FVS in order to forecast the consequences of
implementing alternative management scenarios on a subject forest landscape. A
description of the gomplete decision-analysis process supported by the NED-FVS
prototype can be fqund in Rauscher et al. (2000). For the purposes of the present
discussion, we can regard NED-1 as the caller or client program and SUPPOSE-
FVS as a legacy application (see Fig. 1). In this section, we present a brief
description of how we implemented the DCOM-based interoperable framework
discussed previously. '

The communication between the NED-1 client and any application module is
through the controller (see Fig. 2). In our prototype, we think of the NED-1 client
and the controller as residing on the same computer system. Because of our use of
the DCOM communication backbone, the design makes no assumptions about the




348 W.D. Pouter et al. / Computers and Electronics in Agriculture 27 (2000) 335-354

| NED-1 |

A
[ Controller |

!

| DCOM |

Suppose - FVS Wrapper

A

Suppose Wrapper

A
1" "DCOM__|— :
MDB-FVS S e FVS-MDB
uppos
Module Module

FVS wrapper _—l
L1 Fvs

Fig. 2. Flow chart of NED-FVS application.

physical location of any of the applications. The applications may reside on the
local machine or on a remote machine without affecting the functionality of the
system. Normally, the controller contains processing rules that help interpret the
user’s needs. These processing rules determine the kind of information that must be
collected from the user. There is typically continuous interaction between the caller
and the controller (Fig. 2). The processing rules also determine which application to
activate. In our NED-FVS prototype, the controller can be quite simple because it
needs to know only about the SUPPOSE-FVS system. Therefore, NED-1 issues a
request to the controller to execute the SUPPOSE-FVS wrapper and then awaits a
response from the controller. The response contains a message that either the task
was successfully completed or that some error occurred. If an error occurred,
NED-1 reports the type of error to the user, otherwise the user is informed that a
successful forecast has been made.

The controller executes the SUPPOSE-FVS wrapper. The task of a wrapper is to
interpret the request of a calling client and manage an application program to
implement a solution process. For example, the SUPPOSE-FVS wrapper knows
how to understand requests from the controller and manage the SUPPOSE and
FVS executable programs. The wrapper expects information from the controlier
about which Microsoft Access database file contains the relevant NED-1 source
data and which database file is supposed to receive the predicted output data. The
wrapper software contains the knowledge of how to proceed with the task. In our
NED-FVS prototype, the wrapper calls a translator program (MDB-FVS) that
finds the necessary information in a database file and creates the correctly format-
ted output files that both SUPPOSE and FVS require (Fig. 2). The SUPPOSE-FVS
wrapper then calls the SUPPOSE wrapper.
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The SUPPOSE wrapper (Fig. 2) checks to make sure the necessary support files
are available and then executes SUPPOSE. SUPPOSE is a Windows program that
directly communicates with the user to set up an FVS run by creating a keyword
instruction file. This|direct communication between a legacy application and the
user is a compromise|on our part. 1deally, only the NED-1 program should directly
communicate with the user, but SUPPOSE is a complicated legacy application that
would be difficult and expensive to duplicate, a situation that is frequently
encountered. This compromise, however, necessitates that the SUPPOSE wrapper
must be more intelligent. It is quite possible for the user to create a keyword
instruction file that fails to command FVS to create the expected output files in the
expected format. To guard against this possibility, the SUPPOSE wrapper must
read this keyword instruction file, understand it, and fix any potential problems it
encounters. If the wrapper finds it cannot fix a problem, it reports an error, stops
the process, and reports this error back to the SUPPOSE-FVS wrapper that would
then pass it along to NED-1 and the user. If the keyword instruction file passes
inspection, then confrol passes back to the SUPPOSE-FVS wrapper.

Now, the SUPPOSE-FVS wrapper can execute the FVS wrapper along with the
information about which FVS variant to use. The choices are: SOUTHEAST,
NORTHEAST, SOUTHERN, or SOUTHERN APPALACHIAN. The wrapper
executes the proper variant and checks that the expected output file has been
created. Again, an error is reported if the expected output file cannot be found and
control is passed back to the SUPPOSE-FVS wrapper.

S wrapper then executes the FVS-MDB module that takes the

FVS output file, finds the data of interest, and builds a new Microsoft Access

database file containing the predicted growth and mortality information. Once the

new database file exists, the SUPPOSE-FVS wrapper reports a successfully com-
pleted job to the controller, and the controller reports the same to NED-1 and,
through NED-1, to the user.

This description of the NED-FVS prototype highlights some important lessons of
more general interest.

1. Wrappers are generally needed to manage the peculiarities associated with most
legacy software.

2. Error checking dnd reporting is a necessary and important part of the process.
Errors should be reported in the greatest detail possible in order to give the user
and the other system components the best chance to correct them and obtain a
successful run.

3. The organizational framework consisting of a controller-DCOM-wrapper-ap-
plication sequence can be replicated into as many nested layers as needed in
order to isolate software peculiarities and create a successful problem manage-
ment system.

4. The generic nature of the communication framework need not be compromised
by any peculiarities of the particular legacy software encountered.

5. The generic architecture facilitates the addition of other legacy and new applica-
tions since the infrastructure is already in place.
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8. Discussion

To achieve more effective overall decision support for forest ecosystem manage-
ment, it is necessary to integrate various existing decision support system modules.
An interoperable approach offers an interface standard that promotes communica-
tion between component modules and makes it possible to integrate newly devel-
oped modules and refine current modules over time, if necessary. More specifically,
the approach should provide language interoperability, platform independence,
inter-module communication mechanisms, object re-usability, interface standards
for dealing with legacy systems, and distributed processing power. It should not be
restricted by any specific domain characteristics. It should serve only as a middle-
ware framework. Using these criteria, we reviewed FEM-DSSs that try to solve the
interoperability issue. Among them are NED-1, LOK], FVS, LMS and INFORMS.
Unfortunately, most of them adopt ad hoc approaches that are difficult to extend
into generic interoperable architectures. LOKI appears to be a promising middle-
ware framework, but it fails to pass all of the criteria. However, a new version of
LOKI1 is under development.

In the meantime, new technologies recently emerging (primarily during the mid
1990s) that deal with interoperability were also investigated. These include the
intelligent agent approach, DIAS/DEEM, CORBA, and DCOM. The agent ap-
proach is not concerned with low-level details about interoperability; using CORBA
or DCOM as their respective facilitating middleware, most associated studies have
focused on high-level interoperability such as semantics and complex coordination,
with the majority of available agent environments being developed on UNIX
platforms. The implementation of the approach tends to be expensive due to its
technical complexity (Finin et al., 1994; Genesereth and Ketchpel, 1994) and it has
rarely been used in integrating real-world applications. Likewise, DIAS/DEEM is
also a high-level framework. Designed to work in the UNIX environment and use
CORBA as its communication middleware, it specifically deals with integration of
environmental effects simulation models and therefore is not a general-purpose
architecture. CORBA and DCOM are the two architectures that satisfy all of the
criteria. They have mature specifications, are comparable in functionality, and both
are being used widely in industrnal, governmental and organizational projects.
Because DCOM is embedded in Windows, it is considered a better choice for
Windows-based applications (Grimes 1997).

After selecting DCOM, we set about developing a working prototype to integrate
NED-1 and FVS. We developed a primitive controller to handle the interactions
and a basic wrapper for the DOS version of FVS. We ran the prototype on a
Windows95 machine; this meant that we had to install and set up DCOM.
However, when this was done, the prototype worked very smoothly. DCOM was
totally transparent to the operation of the prototype. Although no performance
tests were carried out, there appeared to be absolutely no performance degradation
as a result of using DCOM. We are currently enhancing the prototype to integrate
two other applications as well as have an intelligent query driven controller.
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The controller is quite straightforward in our current implementation because
of the simplicity of the coordinating activities it involves. However, if it needs to
coordinate more complex communications between components for more appli-
cations, it may be a good idea to introduce a rule-based system into it (the next
phase of the project addresses this issue). The future controller may also need to
deal with database transaction processing for some applications. Our implemen-
tation marks the first phase of a long-term project to develop an intelligent
information system for knowledge, data, and model management (Potter et al.,
1992, 1994). As the first phase, security issues were not addressed. These issues
will have to be addressed in the future in order to support our global distributed
perspective. In addition, dealing with user interfaces of legacy applications that
are to be DCOM servers deserves further investigation, especially if the servers
are on remote machines. In the current implementation, the FVS server avoids
the user interface of its legacy application by running a stand simulation in
batch mode that requires little interaction with the user. However, in future
phases of this project, we shall address the issue of legacy applications and how
to transform then in an effective way so that they can be integrated within our
architecture.

9. On the horizon

New technologies are constantly being developed to improve existing comput-
ing approaches. The area of distributed computing is no exception. For example,
during our investigations reported here, Microsoft, UserLand Software, and De-
velopMentor collaborated on the development of a new interoperability ap-
proach called XML-RPC (Walsh, 1998; Winer, 1998; Udell, 1999). Still in its
infancy, the idea of using remote procedure calling over the Internet is gaining
favor among ‘techies’. XML-RPC may become the new standard for interoper-
ability championed by Microsoft, but it probably will take several years. For
mainstream users that need a distributed interoperability solution today, DCOM
provides the best approach. Of course, it may not be the best approach in a few
years, but that is| the way it goes in a high-technology arena; change comes

quickly. :
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